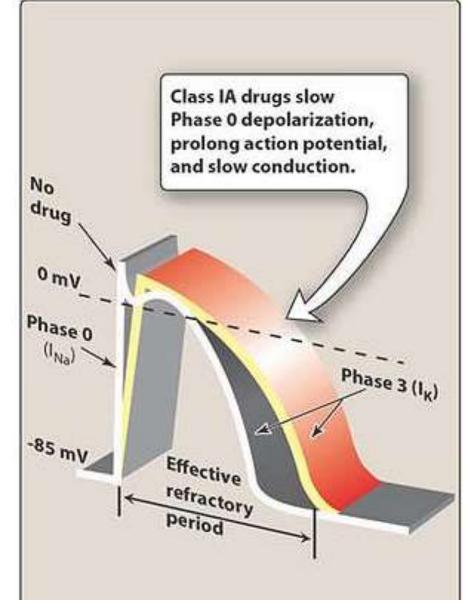

Classification of antiarrhythmics

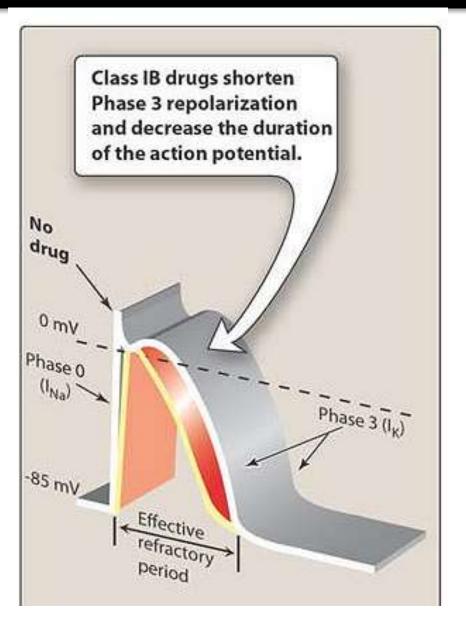

- Class I: Sodium channel blockers
- Class II: β-Adrenergic blockers
 - Propranolol, acebutolol, esmolol
- Class III: Potassium channel blockers
 Amiodarone, bretylium, sotalol
- Class IV: calcium channel blockers
 - Verapamil, diltiazem
- Miscellaneous
 - PSVT: Adenosine, Digoxin
 - AV block: Atropine

Class I: Sodium channel blockers

- IA: Prolong repolarization
 - Quinidine, procainamide, disopyramide, morcizine
- IB: Shorten repolarization
 - Lignocaine, mexiletine, phenytoin
- 1C: Little effect on repolarization
 - Encainide, flecainide, propafenone

Class IA

Quinidine


- D- isomer of quinine obtained from cinchona bark
- MOA: blocks sodium channels
 - ↓ automaticity , conduction velocity and prolongS repolarization
 - − \downarrow phase 0 depolarization , \uparrow APD & \uparrow ERP
- Other actions:
 - $-\downarrow$ BP (α block), skeletal muscle relaxation
- Uses: Atrial and ventricular arrhythmias
- Adverse effects:
 - Arrhythmias and heart block , hypotension, QT prolongation
 - GIT , thrombocytopenia, hepatitis , idiosyncratic reactions
 - High doses cinchonism like quinine

- Procainamide:
 - Derivative of procaine
 - No vagolytic or α -blocking action unlike quinidine
 - Better tolerated
 - Adverse effects:
 - Nausea, vomiting and hypersensitivity reactions
 - Higher doses can cause hypotension, heart block and QT prolongation
- Disopyramide:
 - Significant anticholinergic properties:
 - Dry mouth, blurred vision, constipation, urinary retention

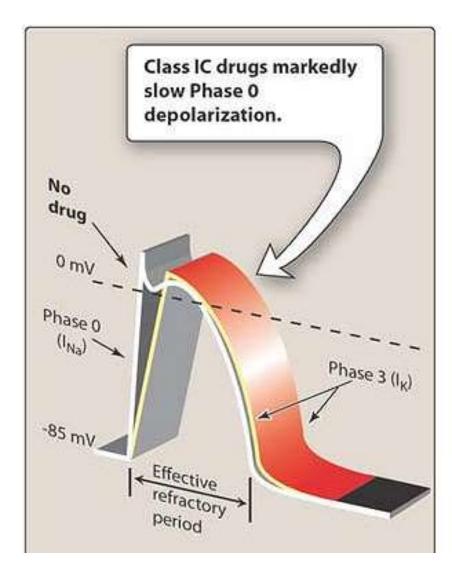
Class IB drugs

Lignocaine, phenytoin, mexiletine

Block sodium channels also shorten repolarization

Lignocaine

- Local anaesthetic
- Raises threshold for action potential, ↓automaticity
- Suppress electrical activity of arrhythmogenic tissues, normal tissues less effected
- High first pass metabolism so given parenterally
- Use: ventricular arrhythmias
- Adverse effects:
 - Drowsiness, hypotension, blurred vision, confusion and convulsions

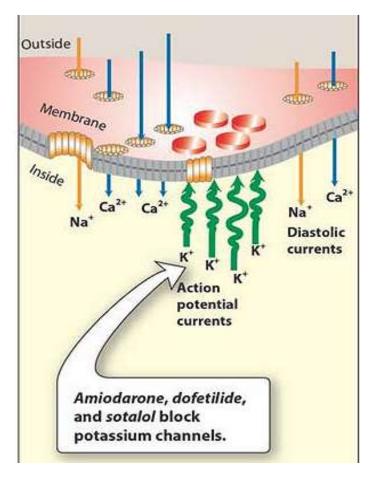

• Phenytoin:

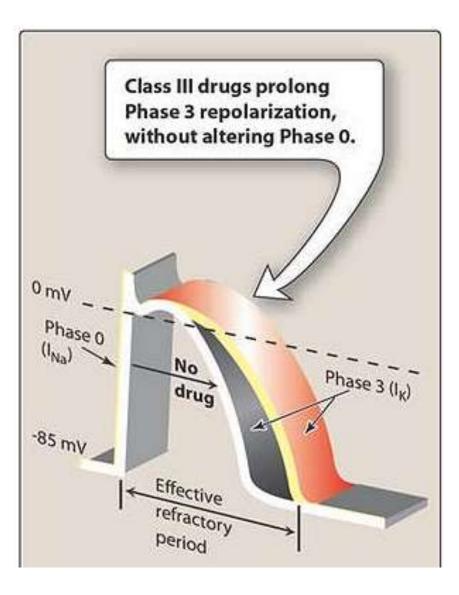
- Antiepileptic also useful in ventricular arrhythmias (not preferred) and digitalis induced arrhythmias
- Mexiletine:
 - Can be used orally causes dose related neurological adverse events like tremors and blurred vision
 - Nausea is common
 - Used as alternative to lignocaine in ventricular arrhythmias

Class I C drugs Encainide, Flecainide, Propafenone

Have minimal effect on repolarization Are most potent sodium channel blockers

Risk of cardiac arrest , sudden death so not used commonly
May be used in severe ventricular arrhythmias




Class II drugs

- Supress adrenergically mediated ectopic activity
- Antiarrhythmic action due to of β blockade
- Depress myocardial contractility, automaticity and conduction velocity
- Propranolol:
 - Treatment & prevention of supraventricular arrhythmias especially associated with exercise, emotion or hyperthyroidism
- Esmolol:
 - IV short acting can be used to treat arrhythmias during surgery , following MI & other emergencies

Class III drugs

个APD & 个RP by blocking the K⁺ channels

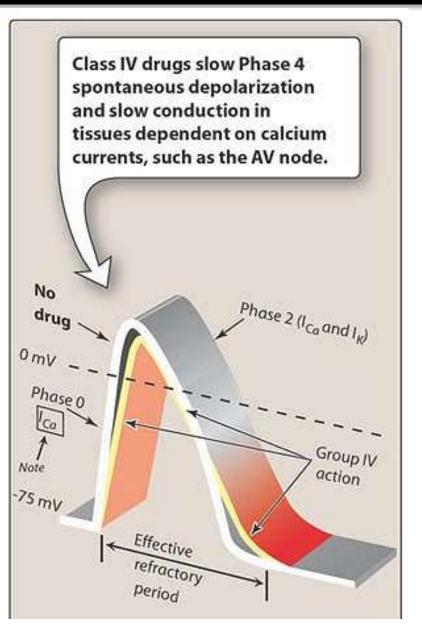
Amiodarone

- Iodine containing long acting drug
- Mechanism of action: (Multiple actions)
 Prolongs APD by blocking K⁺ channels
 - -blocks inactivated sodium channels
 - $-\,\beta$ blocking action , Blocks Ca^{2+} channels
 - $-\downarrow$ Conduction, \downarrow ectopic automaticity
- Pharmacokinetics:
 - Variable absorption 35-65%
 - Slow onset 2days to several weeks
 - Duration of action : weeks to months
 - Many drug interactions

Amiodarone

• Uses:

- Can be used for both supraventricular and ventricular tachycardia
- Adverse effects:
 - Cardiac: heart block , QT prolongation, bradycardia, cardiac failure, hypotension
 - Pulmonary: pneumonitis leading to pulmonary fibrosis
 - Bluish discoloration of skin
 - GIT disturbances, hepatotoxicity
 - Blocks peripheral conversion of T4to T3 can cause
 hypothyroidism or hyperthyroidism


- Bretylium:
 - Adrenergic neuron blocker used in resistant ventricular arrhythmias
- Sotalol:
 - Beta blocker
- Dofetilide:
 - Selective K⁺ channel blocker, less adverse events
 - Oral use in AF to convert or maintain sinus rhythm

• Ibutilide:

 – K⁺ channel blocker used as IV infusion in AF or flutter can cause QT prolongation

Calcium channel blockers (Class IV)

- Inhibit the inward movement of calcium ↓ contractility, automicity , and AV conduction.
- Verapamil & diltiazem

Verapamil

- Uses:
 - Terminate PSVT
 - control ventricular rate in atrial flutter or fibrillation
- Drug interactions:
 - Displaces digoxin from binding sites
 - $-\downarrow$ renal clearance of digoxin

Other antiarrhythmics

- Adenosine :
 - Purine nucleotide having short and rapid action
 - Mechanism of action: AcetylCholine sensitive K+ channels and causes membrane hyperpolarization through interaction with A₁ type of adenosine GPCRs on SA node
 - IV suppresses automaticity, AV conduction and dilates coronaries
 - Drug of choice for PSVT
 - Adverse events:
 - Nausea, dyspnoea, flushing, headache
- Atropine: Used in sinus bradycardia
- Digitalis: Atrial fibrillation and atrial flutter
- Magnesium SO₄: digitalis induced arrhythmias